2019內(nèi)蒙古軍隊(duì)文職考試考試:如何快速解答數(shù)量關(guān)系題

2019內(nèi)蒙古軍隊(duì)文職考試考試崗位能力試卷包含五部分,常識(shí)、言語理解、判斷推理、數(shù)量關(guān)系、資料分析,這五部分中數(shù)量關(guān)系是最難的一部分,也是廣大考生最頭疼的一部分,那么快速解答數(shù)量關(guān)系題的技巧是什么,整理如下: 一、整除法 當(dāng)題目中出現(xiàn)分?jǐn)?shù)、比例、倍數(shù)、百分?jǐn)?shù)等數(shù)字時(shí),或出現(xiàn)每、整除、平均等漢字時(shí),我們可以優(yōu)先考慮運(yùn)用整除的方法來進(jìn)行解題,即結(jié)合選項(xiàng)利用數(shù)字之間的關(guān)系,化繁為簡(jiǎn)排除錯(cuò)誤答案,得到正確答案,從而達(dá)到快速解題的目的。 例1:學(xué)校有足球和籃球的數(shù)量比為8:7,先買進(jìn)若干個(gè)足球,這時(shí)足球與籃球的數(shù)量比變?yōu)?:2,接著又買進(jìn)一些籃球,這時(shí)足球與籃球的數(shù)量比為7:6。已知買進(jìn)的足球比買進(jìn)的籃球多3個(gè),原來有足球多少個(gè)?

所以找到和原來足球有關(guān)的條件學(xué)校有足球和籃球的數(shù)量比為8:7,根據(jù)這句話可知,原來足球被分為8份,又因?yàn)樽闱蚨际钦麛?shù)個(gè),所以我們可以確定原來足球的個(gè)數(shù)為8的倍數(shù),所以一定可以被8整除,而選項(xiàng)中只有A選項(xiàng)能被8整除,所以可以判斷選A。 通過這道題,我們可以感受到,當(dāng)出現(xiàn)整除的特征時(shí),運(yùn)用整除特征解題要比利用方程解題快速便捷。 二、比例法 比例法是軍隊(duì)文職考試考試崗位能力數(shù)學(xué)運(yùn)算中很重要的一種題解方法,比例法具有操作簡(jiǎn)單,應(yīng)用廣泛兩大優(yōu)點(diǎn)??梢越鉀Q考試中的很多必考題型,比如普通比例問題,行程問題、工程問題等。所以比例法對(duì)于解決數(shù)量關(guān)系題,既有效又實(shí)用。比例方法適用的題目特征為題目中出現(xiàn)比例或出現(xiàn)提高、多、快(降低、少、慢)等字樣時(shí)。

去甲廠實(shí)習(xí)的畢業(yè)生占畢業(yè)生總數(shù)的32%,去乙廠實(shí)習(xí)的畢業(yè)生比甲廠少6人,且占畢業(yè)生總數(shù)的24%。問去丙廠實(shí)習(xí)的人數(shù)比甲廠實(shí)習(xí)的人數(shù): A.少9人B.多9人C.少6人D.多6人 答案:B,解析:根據(jù)題目條件,可知去丙廠實(shí)習(xí)的人數(shù)占畢業(yè)生總?cè)藬?shù)的1-32%-24%=44%。所以,我們可以得出甲、乙、丙三廠的實(shí)習(xí)人數(shù)之比為32%:24%:44%=8:6:11。根據(jù)已知條件,乙廠比甲廠在比例上少了2份,實(shí)際少了6人,即1份是3人。所求的丙廠比甲廠在比例上多了3份,也就是說,實(shí)際上多9人,選擇B選項(xiàng)。

2018年內(nèi)蒙古崗位能力備考攻略之古典概率問題

概率問題是內(nèi)蒙古軍隊(duì)文職考試考試崗位能力當(dāng)中很重要的一類題型,從近3年來看,2015年副軍隊(duì)文職招聘了2個(gè)題目,市地考了1個(gè)題目,2016年副省和市地均考了一個(gè)題目并且題目相同,2017年副省仍然考了2個(gè)題目,市地考了1個(gè)題目,并且這一個(gè)題目是兩套卷相同題目,從此可以看出概率問題出題頻率非常高,同時(shí)此類題型也是能夠拉開檔次的題目,好多考生都不擅長概率問題,概率問題和排列組合有著密切聯(lián)系,但是切不可將二者混為一談。紅師教育在此進(jìn)行詳細(xì)講解。 在生活中人們常說某人有百分之幾的把握通過某次考試,職員有多大的機(jī)會(huì)通過職位晉升考試,某球隊(duì)打贏對(duì)手的可能性等等,這些都是概率的實(shí)例。所謂的概率指的是一個(gè)事件發(fā)生的可能性大小的數(shù),叫做該事件的概率,其取值范圍是從0到1之間的實(shí)數(shù)。

古典概率的公式為P(A)=A所包含的等可能性的基本事件數(shù)總的等可能性的基本事件數(shù),在這里如何辨別什么是分子所指的A所包含的等可能性的基本事件數(shù),就看題目最后一句話問的是什么概率,分母的總的等可能性的基本事件數(shù)是指問題前面那句話。比如說在一個(gè)袋子里裝有10個(gè)小球,除了顏色外其余均相同,6紅4白,從中任意取一個(gè)小球,該球是紅球概率有多大? 解析:?jiǎn)栴}求的P(A)為一個(gè)球?yàn)榧t球,分子部分也是要找到一個(gè)球且為紅球的情況數(shù)為6個(gè)紅球中任意取出一個(gè),有6種情況;分母指的總情況數(shù)是10個(gè)球任意去一個(gè),有10種情況,所以此題所求概率為610=60%。 明白公式后,我們還要知道分子、分母求解方法有兩種,一個(gè)是枚舉法,如上面所舉的例子,另一個(gè)是用排列組合的方法進(jìn)行求解。

某辦公室5人中有2人精通西班牙語。如從中任意選出3人,其中恰有1人精通西班牙語的概率是多大?

2019內(nèi)蒙古軍隊(duì)文職考試考試:如何識(shí)別“牛吃草問題”

在2019年內(nèi)蒙古軍隊(duì)文職考試在學(xué)習(xí)的過程中,我們會(huì)發(fā)現(xiàn)有一種可以利用公式快速求解的題型叫做牛吃草問題。此類問題是經(jīng)典的、??疾凰サ念}型。遇到此類問題,只要套用其核心公式:原有草量=(牛數(shù)-草長速度)時(shí)間,即y=(N-x)T即可快速求解。 在我們遇到明顯的此類問題時(shí),可以直接套用公式進(jìn)行計(jì)算。但是,在實(shí)際考試中,題目中并不會(huì)直接出現(xiàn)牛和草等字眼,也就是牛吃草問題的衍生題型。遇到此類題型,考生往往不能一眼識(shí)別出,而采用列方程或其他方法進(jìn)行求解,大大降低了解題速度。 列如下面的題目: