解放軍文職招聘考試數(shù)學(xué)教學(xué)常用的基本方法大致有:講解法、練習(xí)法、演示與試驗(yàn)法、小組討論教學(xué)法等。-解放軍文職人員招聘-軍隊(duì)文職考試-紅師教育

解放軍文職招聘考試數(shù)學(xué)教學(xué)常用的基本方法大致有:講解法、練習(xí)法、演示與試驗(yàn)法、小組討論教學(xué)法等。發(fā)布時(shí)間:2017-06-20 23:01:13第一. 要有自信面試是考生和考官之間面對(duì)面的交談,只有自己相信自己,別人才能相信你??脊傩枰氖且粋€(gè)能夠直接站在講臺(tái),勝任教師角色的人。而作為一名教師,信心和責(zé)任心是第一位的。所以,在面試過(guò)程中,考生要抱著 豁出去 的心態(tài),不要露怯,大膽去應(yīng)對(duì)。第二. 要有激情作為一名教師,尤其是小學(xué)教師,激情是必不可少的。在面試過(guò)程中,最起碼要聲音清晰洪亮,最好能夠抑揚(yáng)頓挫,激發(fā)學(xué)生的學(xué)習(xí)熱情。講課時(shí)語(yǔ)速不要過(guò)快,要切實(shí)考慮學(xué)生實(shí)際,符合學(xué)生實(shí)際狀況進(jìn)行教學(xué)。另外,講課時(shí)可以運(yùn)用一些手勢(shì)、動(dòng)作,盡可能地還原真實(shí)的課堂。第三. 要有眼神交流面試過(guò)程中,雖然沒(méi)有學(xué)生配合你講課,考官在整個(gè)過(guò)程中也不會(huì)和你有任何交流,但是要注意跟臺(tái)下考官有眼神的交流。眼睛要顧慮到每一位考官,使臺(tái)下的每一個(gè)考官都以為你在看他們,注視著他們。另外,要面帶微笑,顯得有親和力。第四. 教學(xué)過(guò)程要完整教師面試試講雖然只有十五到二十分鐘的時(shí)間,但是也要呈現(xiàn)一堂完整的課程。主要包括導(dǎo)入 新授 鞏固練習(xí) 作業(yè)布置 小結(jié)這五個(gè)環(huán)節(jié)。既然要保證課程的完整性,那么考生就不能在面試過(guò)程中超時(shí),超時(shí)顯然過(guò)程就是殘缺的。所以,每個(gè)環(huán)節(jié)都應(yīng)該保證在適當(dāng)?shù)臅r(shí)間區(qū)間內(nèi)完成。一般來(lái)講,導(dǎo)入環(huán)節(jié)2分鐘以內(nèi);新授環(huán)節(jié)占用時(shí)間較多,大約7 10分鐘;鞏固練習(xí)環(huán)節(jié)1 2分鐘;作業(yè)布置和小結(jié)環(huán)節(jié)加起來(lái)不超過(guò)2分鐘(該時(shí)間以總試講時(shí)間15分鐘為基準(zhǔn)設(shè)置)。另外,這五個(gè)環(huán)節(jié)中,前兩個(gè)環(huán)節(jié)即導(dǎo)入和新授環(huán)節(jié)是最重要的,我們常說(shuō) 良好的開(kāi)端是成功的一半 。因此,考生要在面試前調(diào)整好自己的心態(tài),確保在開(kāi)始就能發(fā)揮出自己最好的狀態(tài)。第五. 教學(xué)方法要多樣化面試過(guò)程中,考生要運(yùn)用多種教學(xué)方法進(jìn)行教學(xué)。同時(shí),要跟上時(shí)代步伐,最好能采用多媒體教學(xué),體現(xiàn)新課程的理念,這通常是考生的加分點(diǎn)。有些方式,如多媒體教學(xué)、實(shí)驗(yàn)教學(xué),雖然在試講時(shí)沒(méi)辦法呈現(xiàn),但是考生要通過(guò)自己的語(yǔ)言以及肢體表現(xiàn)出來(lái),讓考官感受到你是在運(yùn)用那些方法進(jìn)行教學(xué)。第六. 板書(shū)要美觀一方面,板書(shū)是向考官展示教學(xué)重點(diǎn)的主要途徑。如果考生能將板書(shū)設(shè)計(jì)好,這無(wú)疑也是加分點(diǎn)。對(duì)于板書(shū)設(shè)計(jì),整體來(lái)說(shuō),堅(jiān)持 字不如表,表不如圖 的原則。另一方面,板書(shū)對(duì)于學(xué)生來(lái)說(shuō)是起到一個(gè)榜樣示范的作用。因此,小學(xué)教師在板書(shū)時(shí)要一筆一劃寫(xiě),不能寫(xiě)連筆字。如果對(duì)粉筆字不自信或者無(wú)要求板書(shū),可以減少板書(shū)。

解放軍文職招聘考試朱世杰及元代數(shù)學(xué)-解放軍文職人員招聘-軍隊(duì)文職考試-紅師教育

發(fā)布時(shí)間:2017-11-22 19:29:09朱世杰及元代數(shù)學(xué)一、元初數(shù)學(xué)成就1.王恂的數(shù)學(xué)工作王恂(1235 1281),元代數(shù)學(xué)家.字敬甫,唐縣(今屬河北)人.他 六歲就學(xué),十三歲學(xué)九數(shù),輒造其極 .后從劉秉忠學(xué),官至太史令.至元十七年(1280)與天文學(xué)家郭守敬(1231 1316)等共同編成《授時(shí)歷》,其中的數(shù)學(xué)工作主要是王恂作的.唐代張遂制訂歷法時(shí),假定太陽(yáng)作勻加速運(yùn)動(dòng),所以使用二次內(nèi)插法.但實(shí)際上,太陽(yáng)運(yùn)行的加速度是不斷變化的.在《授時(shí)歷》中,王恂把太陽(yáng)、月亮及五星的視行度當(dāng)作時(shí)間的三次函數(shù),采用三次內(nèi)插法來(lái)求函數(shù)值,收到更好效果.但確定天體位置需要使用赤道坐標(biāo)和黃道坐標(biāo),王恂之前是直接通過(guò)天文觀測(cè)來(lái)確定這兩種坐標(biāo)的.王恂首先注意到兩種坐標(biāo)的數(shù)學(xué)關(guān)系,提出如下問(wèn)題:已知太陽(yáng)的 黃道積度 ,求 赤道積度 和 赤道內(nèi)外度 .如圖8.16,設(shè)A為春分點(diǎn),D為夏至點(diǎn),其中d為直徑,BN OC,CP OE.只要測(cè)得黃道坐標(biāo),便可利用上述公式及其他有關(guān)知識(shí)推出相應(yīng)的赤道坐標(biāo),從而使人們經(jīng)過(guò)較少的實(shí)測(cè),得到較多的結(jié)果.2.趙友欽的割圓術(shù)趙友欽,元代天文學(xué)家、數(shù)學(xué)家.字子公,號(hào)緣督先生,鄱陽(yáng)(今江西鄱陽(yáng))人,生卒年不詳.所著《革象新書(shū)》是一部天文數(shù)學(xué)著作.作圓內(nèi)接正方形,然后不斷倍增邊數(shù),依次求得各內(nèi)接正多邊形邊長(zhǎng)(圖8.17). 置第十二次之小弦以第十二次之曲數(shù)一萬(wàn)六千三百八十四乘之,得三千一百四十一寸五分九厘二毫有奇,即是千寸徑之周?chē)玻苈式浦抵凶顪?zhǔn)確的一個(gè).趙友欽說(shuō): 自一、二次求之以至一十二次,可謂極其精密.若節(jié)節(jié)求之,雖至千萬(wàn)次,其數(shù)終不窮. 可見(jiàn)他不僅認(rèn)識(shí)到圓內(nèi)接正多邊形的極限位置是圓,而且認(rèn)識(shí)到極限是一個(gè)不可窮盡的過(guò)程,這種思想與現(xiàn)代極限觀念相當(dāng)接近.趙友欽還進(jìn)一步揭示了方、圓關(guān)系,說(shuō): 要之方為數(shù)之始,圓為數(shù)之終.圓始于方,方終于圓. 這種 曲直互通 的思想是很深刻的,他已認(rèn)識(shí)到方可轉(zhuǎn)化為圓,而轉(zhuǎn)化的條件便是取極限.二、朱世杰生平朱世杰,元代數(shù)學(xué)家.字漢卿,號(hào)松庭,燕山(今北京附近)人,生卒年不詳.元統(tǒng)一中國(guó)后,朱世杰曾以數(shù)學(xué)家的身份周游各地二十余年,向他求學(xué)的人很多,他到廣陵(今揚(yáng)州)時(shí) 踵門(mén)而學(xué)者云集 .朱世杰全面繼承前人的數(shù)學(xué)成果,他吸收了高次方程的數(shù)值解法,又吸收了北方的天元術(shù)及南方的各種日用算法、數(shù)學(xué)口訣等,在此基礎(chǔ)上進(jìn)行了創(chuàng)造性研究,寫(xiě)成以總結(jié)和普及當(dāng)時(shí)各方面數(shù)學(xué)知識(shí)為宗旨的《算學(xué)啟蒙》(三卷)和四元術(shù)的代表作《四元玉鑒》(三卷),先后于1299年和1303年刊?。焓澜苁窃罱艹龅臄?shù)學(xué)家,清羅士琳(1774 1853)說(shuō)他 兼包眾有,充類(lèi)盡量,神而明之尤超越乎秦(九韶)李(冶)之上. 《四元玉鑒》的成書(shū)則標(biāo)志著宋元數(shù)學(xué)達(dá)到最高峰.美國(guó)科學(xué)史家薩頓(G.Sarton)稱贊該書(shū) 是中國(guó)數(shù)學(xué)著作中最重要的一部,也是中世紀(jì)的杰出數(shù)學(xué)著作之一.三、《算學(xué)啟蒙》《算學(xué)啟蒙》的內(nèi)容由淺入深,次第謹(jǐn)嚴(yán),從一位數(shù)乘法開(kāi)始,一直講到當(dāng)時(shí)的最新數(shù)學(xué)成果 天元術(shù),形成一個(gè)完整體系,內(nèi)容包括多位數(shù)乘法、分?jǐn)?shù)四則運(yùn)算、面積和體積計(jì)算、比例問(wèn)題、垛積術(shù)、盈不足術(shù)、線性方程組、高次方程解法等.尤其引人注目的是,卷首 總括 中給出一整套數(shù)學(xué)概念及運(yùn)算法則,作為全書(shū)的理論基礎(chǔ).其中包括正負(fù)數(shù)乘法法則及倒數(shù)概念.朱世杰明確指出: 同名(號(hào))相乘為正,異名相乘為負(fù). 又指出: 平除長(zhǎng)為小長(zhǎng),長(zhǎng)除平為小平. 小長(zhǎng)平相乘得一步為小積. 這便給出倒數(shù)的基本性質(zhì)在《算學(xué)啟蒙》中,朱世杰借助輔助未知數(shù)解線性方程組,這在數(shù)學(xué)史上還是首次.例如卷下 方程正負(fù)門(mén) 第五題,依術(shù)列方程組如下(改用現(xiàn)代符號(hào)):這種方法對(duì)于簡(jiǎn)化運(yùn)算程序是很有意義的,系數(shù)越復(fù)雜,設(shè)輔助未知數(shù)的方法就越有用.另外,書(shū)中把天元術(shù)廣泛用于各種面積和體積問(wèn)題,導(dǎo)出許多高次方程,這說(shuō)明天元術(shù)在李冶的基礎(chǔ)上有了進(jìn)一步的發(fā)展.朱世杰還致力于算法研究,給出一些新的公式,如 開(kāi)方釋鎖門(mén) 給出根式運(yùn)算法則其中n,a,b為自然數(shù),n 2.《算學(xué)啟蒙》為《四元玉鑒》提供了必要的預(yù)備知識(shí),正如羅士琳所說(shuō),該書(shū) 似淺實(shí)深 ,與《四元玉鑒》 相為表里 .四、《四元玉鑒》《四元玉鑒》的主要成就是四元術(shù),即四元高次方程組的建立和求解方法.在他之前,已有李德載《兩儀群英集臻》討論二元術(shù),劉大鑒《乾坤括囊》討論三元術(shù).在此基礎(chǔ)上,朱世杰 演數(shù)有年,探三才之賾,索九章之隱,按天、地、人、物立成四元 (《四元玉鑒》后序),創(chuàng)立了舉世聞名的四元術(shù).朱世杰的天、地、人、物,相當(dāng)于現(xiàn)在的x,y,z,u,其擺法如圖8 .18,例如方程-x2+3xy-2xz+x-y-z=0(卷下 三才變通 第1題)及2u4-u3-u2+3u-8z2+2xz+2xy+6yz=0(卷下 四象朝元 第6題)分別擺成圖8.19和圖8.20的形狀.《四元玉鑒》共24門(mén)288問(wèn),所有問(wèn)題都與方程或方程組有關(guān).題目順序大體是先方程后方程組,先線性方程組后高次方程組.朱世杰創(chuàng)造了一套完整的消未知數(shù)方法,稱為四元消法.這種方法在世界上長(zhǎng)期處于領(lǐng)先地位,直到18世紀(jì),法國(guó)數(shù)學(xué)家貝祖(E.Bezoub,1730 1783)提出一般的高次方程組解法,才超過(guò)朱世杰.但朱世杰的消法要點(diǎn)僅見(jiàn)于書(shū)首 假令四草 ,其他各題均無(wú)草.書(shū)首還列有 今古開(kāi)方會(huì)要之圖 、 四元自乘演段之圖 、 五和自乘演段之圖 和 五較自乘演段之圖 ,這些圖的作用也是統(tǒng)御全書(shū).朱世杰說(shuō): 凡習(xí)四元者,以明理為務(wù).必達(dá)乘除、升降、進(jìn)退之理,乃盡性窮神之學(xué)也. 卷首各圖便是為 明理 而作,他說(shuō): 夫算中玄妙,無(wú)過(guò)演段.如積幽微,莫越認(rèn)圖.其法奧妙,學(xué)者鮮能造其微.前明五和,次辨五較,自知優(yōu)劣也.《四元玉鑒》表明,朱世杰在方程領(lǐng)域取得重要成就.以前的方程都是有理方程,朱世杰則突破有理式的限制,開(kāi)始討論無(wú)理方程.他不化為有理方程(見(jiàn) 左右逢源 第21題, 撥換截田 第18題, 四象朝元 第1題).四元消法是朱世杰方程理論的核心.他通過(guò)方程組中不同方程的配合,依次消掉未知數(shù),化四元式為一元式,即一元高次方程.三元式和四元式的消法稱為 剔而消之 ,即把全式剔分為二,進(jìn)行相消.二元式的消法稱為 互隱通分相消 .下面以二元三行式為例說(shuō)明其消法.其中各系數(shù)是關(guān)于另一個(gè)未知數(shù)的多項(xiàng)式(可以是常數(shù)).欲消x2項(xiàng),先以B2乘(1)式中x2項(xiàng)以外各項(xiàng),再以A2乘(2)式中x2項(xiàng)以外各項(xiàng),相減,得C1x+C0=0. (3)以x乘(3),得C1x2+C0x=0. (4)將(4)與(1)或(2)聯(lián)立,用同樣方法消去x2項(xiàng),得D1x+D0=0. (5)(3)與(5)聯(lián)立,便為二元二行式.朱世杰稱C1,D0為外二行,C0,D1為內(nèi)二行.內(nèi)二行乘積與外二行乘積相減,得C1D0-C0D1=0.這便消去x,得到只含另一個(gè)未知數(shù)的一元方程了.《四元玉鑒》含二元問(wèn)題36個(gè),三元問(wèn)題13個(gè),四元問(wèn)題7個(gè).雖然用到四元術(shù)的題目不多,但它們卻代表了全書(shū),也代表了當(dāng)時(shí)世界范圍內(nèi)方程組理論的最高水平. 四象朝元 第6題所導(dǎo)出的十四次方程是中國(guó)古算史上次數(shù)最高的方程.高階等差級(jí)數(shù)理論是書(shū)中另一成就.沈括的隙積術(shù)開(kāi)了研究高階等差級(jí)數(shù)的先河,楊輝給出包括隙積術(shù)在內(nèi)的一系列二階等差級(jí)數(shù)求和公式.朱世杰在這一領(lǐng)域作了總結(jié)性工作.在中卷 茭草形段 和下卷 果垛疊藏 中,他依次研究了一階至五階等差級(jí)數(shù)求和問(wèn)題,不僅給出相應(yīng)的公式,而且發(fā)現(xiàn)其規(guī)律,掌握了如下的三角垛統(tǒng)一公式從而奠定了垛積術(shù)的理論基礎(chǔ).實(shí)際上,等差級(jí)數(shù)是幾階的,便可把上式中的p換為幾.朱世杰給出了p=1,2, ,5的特例.他還發(fā)現(xiàn)垛積術(shù)與內(nèi)插法的內(nèi)在聯(lián)系,在 如象招數(shù) 第5題中利用垛積術(shù)導(dǎo)出四次內(nèi)插公式(四次差為一非零常數(shù),五次差為零):其中 1, 2, 3, 4分別為一次差、二次差、三次差、四次差.由于朱世杰正確指出了公式中各項(xiàng)系數(shù)恰好是一系列三角垛的積,他顯然能夠解決更高次的內(nèi)插問(wèn)題,從而把中國(guó)古代的內(nèi)插法推向一個(gè)新水平.在幾何方面,朱世杰也有一定的貢獻(xiàn).自《九章算術(shù)》以來(lái),中國(guó)就有了平面幾何與立體幾何,但一直到北宋,幾何研究離不開(kāi)勾股和面積、體積.李冶開(kāi)始注意到圓城圖式中各元素的關(guān)系,得到一些定理,但未能推廣到更一般的情形.朱世杰在李冶思想的基礎(chǔ)上,深入研究了勾股形內(nèi)及圓內(nèi)各幾何元素的數(shù)量關(guān)系,發(fā)現(xiàn)了平面幾何中的射影定理和特殊情形的弦冪定理.例如卷上 混積問(wèn)元 第七題,如圖8.21,朱世杰得到公式易證等號(hào)左面等于h2,所以此式與射影定理h2=ef等價(jià).再如卷中 撥換截田 第十四題,如圖8.22,AB CD于E,朱世杰給出公式4CE ED=AB2此式顯然是弦冪定理CE ED=AE EB在兩弦垂直且有一弦為直徑時(shí)的特殊情形.五、宋元數(shù)學(xué)的外傳及衰落《算學(xué)啟蒙》出版后不久即傳到朝鮮和日本.在朝鮮李朝時(shí)期(14 16世紀(jì)),《算學(xué)啟蒙》及《楊輝算法》都被作為朝廷選拔算官的基本書(shū)籍.兩書(shū)的朝鮮慶州府刻本(15世紀(jì))一直保存至今.由于《算學(xué)啟蒙》在明代失傳,清羅士琳幸得朝鮮金始振翻刻本(1660),于1839年在揚(yáng)州重新出版,成為中國(guó)現(xiàn)存各版本的母本.《算學(xué)啟蒙》對(duì)日本的影響也很大,不少日本學(xué)者在研究此書(shū)的基礎(chǔ)上寫(xiě)出專(zhuān)著,比較著名的有星野實(shí)宣《新編算學(xué)啟蒙注解》三卷(1672)、建部賢弘《算學(xué)啟蒙諺解大全》七卷(1690)等.宋元數(shù)學(xué)還曾傳到阿拉伯.13世紀(jì)旭烈兀①西征時(shí),帶走了一批中國(guó)天文學(xué)家和數(shù)學(xué)家.他征服波斯后支持納西爾丁(Na-sirad-Din,1201 1274)在馬拉蓋(Maraghen,今伊朗境內(nèi))建立了一座規(guī)模宏大的天文臺(tái),并把帶去的中國(guó)學(xué)者留在天文臺(tái)和納西爾丁一起工作,這是中國(guó)數(shù)學(xué)傳入阿拉伯國(guó)家的一個(gè)途徑.阿拉伯?dāng)?shù)學(xué)家卡西(al-kāshī,? 1429)的《算術(shù)之鑰》(The Key of Arithmetic,1427)中有不少內(nèi)容與中國(guó)數(shù)學(xué)相同,如賈憲三角形、增乘開(kāi)方法,以及和 百雞問(wèn)題 極為類(lèi)似的 百禽問(wèn)題 等.他受到中國(guó)數(shù)學(xué)影響是可以肯定的,當(dāng)然不排除其獨(dú)立取得成果的可能性.在元代,阿拉伯?dāng)?shù)碼曾傳入中國(guó),但并未被中國(guó)人接受.歐幾里得《幾何原本》也傳到上都(今內(nèi)蒙古正藍(lán)旗),可惜沒(méi)有譯成中文,所以影響不大,不久便散失了.朱世杰之后,元代數(shù)學(xué)便開(kāi)始走下坡路.明代數(shù)學(xué)理論水平遠(yuǎn)不及宋元,天元術(shù)、四元術(shù)成為絕學(xué).直到明末清初,由于西方數(shù)學(xué)的傳入及中國(guó)學(xué)者的努力,數(shù)學(xué)才有所回升.那么,宋元數(shù)學(xué)衰落的原因是什么呢?首先,中國(guó)傳統(tǒng)數(shù)學(xué)是依靠算籌的,雖然這是一種很有用的計(jì)算工具,但具有不可避免的局限性,因?yàn)樗贿m于計(jì)算而不適于證明,只能表示具體的量而不能表示抽象的量.這就限制了人們的抽象思維,限制了數(shù)學(xué)一般化程度的提高.宋元方程理論可以由天元術(shù)發(fā)展為四元術(shù),但在籌算體系內(nèi)卻無(wú)法建立五元術(shù)或n元術(shù),因?yàn)樗膫€(gè)未知數(shù)已把 太 的上下左右占滿.這個(gè)例子便說(shuō)明了算籌的局限性.更重要的是,人們無(wú)法利用算籌進(jìn)行邏輯推理,也很難在籌算體系內(nèi)發(fā)展數(shù)學(xué)符號(hào).但這些消極因素的總和,充其量是使數(shù)學(xué)停滯不前.而事實(shí)上,元末數(shù)學(xué)不僅沒(méi)前進(jìn),反而后退.造成這種狀況的原因就不在數(shù)學(xué)內(nèi)部,而在于社會(huì)了.當(dāng)時(shí)的政策是不利于科學(xué)發(fā)展的,尤其是八股取士制.1314年恢復(fù)科舉考試后,內(nèi)容以朱熹集注的《四書(shū)》為主,將數(shù)學(xué)內(nèi)容完全取消.不久,這種考試發(fā)展為 以四書(shū)五經(jīng)命題、八股文取士 的制度,引導(dǎo)知識(shí)分子遠(yuǎn)離自然科學(xué),嚴(yán)重束縛了讀書(shū)人的思想.知識(shí)分子們?yōu)榱斯γ?,紛紛埋頭于《四書(shū)五經(jīng)》,只會(huì)在儒家經(jīng)典中尋章摘句,奢談三綱五常之類(lèi)的封建倫理,哪里還顧得上數(shù)學(xué)及其他有實(shí)用價(jià)值的科學(xué)技術(shù)呢?正如元末丁巨所說(shuō): 時(shí)尚浮辭,動(dòng)言大綱 士類(lèi)以科舉故,未暇篤實(shí). 八股取士制的危害,在明代愈演愈烈,顧炎武曾痛斥說(shuō): 開(kāi)科取士,則天下之人日愚一日. 元末以后的社會(huì)思潮也不利于數(shù)學(xué)發(fā)展,成為官方哲學(xué)的理學(xué)完全摒棄了自然科學(xué).理學(xué)家們大談天理、人倫,認(rèn)為科學(xué)技術(shù)乃雕蟲(chóng)小技,為君子所不齒,甚至譏笑研究數(shù)學(xué)的人是 玩物喪志 .在這種社會(huì)環(huán)境中,數(shù)學(xué)由盛而衰就不奇怪了.